Resting macrophages produce distinct metabolites from exogenous arachidonic acid

نویسندگان

  • WA Scott
  • NA Pawlowski
  • M Andreach
  • ZA Cohn
چکیده

Resident mouse peritoneal macrophages rapidly metabolize free arachidonic acid (20:4) in the absence of a discernible trigger. After a 20-min incubation in serumless medium, one-third of the fatty acid was found esterified in cell phospholipid and two-thirds was metabolized to oxygenated products which were recovered in the culture medium. The 20:4 oxygenated metabolites were identified by reverse-phase high performance liquid chromatography as hydroxyeicosatetraenoic acids (HETEs) and 6-keto prostaglandin F(1a) (6-ketoPGF(1a)), the stable form of prostacyclin, together with prostaglandin E(2) (PGE(2)) in proportions of 67:24:9. Inhibitor studies using indomethacin, nordihydroguaiaretic acid, and 5,8,11,14-eicosatetraenoic acid confirmed these metabolites to be lipoxygenase and cyclo-oxygenase products. The proportion of products differs considerably from those generated from phospholipid 20:4 in response to a phagocytic stimulus (HETEs:6-ketoPGF(1a):PGE(2):leukotriene C, 15:25:40: 15-20). Cornyebacterium parvum-elicited macrophages incorporated a higher percentage (70 percent) of exogenously supplied 20:4 and converted less than 20 percent of the fatty acid to oxygenated metabolites. Cyclo-oxygenase products (PGE(2), PGF(2a), TXB(2), and 6-ketoPGF(1a)) represented the major 20:4 metabolites (74 percent) synthesized by these activated macrophages. Esterification of 20:4 into cell phospholipids appeared not to be an initial obligatory step for synthesis of 20:4 oxygenated products by this route. To the contrary, incorporation of 20:4 into cell lipids and metabolism via the cyclo-oxygenase and lipoxygenase pathways represent distinct metabolic fates of exogenously supplied 20:4. These observations establish that resting macrophages contain high levels of cyclo-oxygenase and lipoxygenase activity and suggest macrophages can synthesize lipid mediators of inflammation in the absence of an inflammatory stimulus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uptake and metabolism of monohydroxy-eicosatetraenoic acids by macrophages

Within 5 min, resting macrophages metabolize microM quantities of exogenous arachidonic acid (20:4) to cyclooxygenase and lipoxygenase products. Mono-HETEs represent a major class of metabolites recovered from the medium. However, the quantity of mono-Hetes progressively decreases over a 60-min incubation period, with a concomitant increase in more polar lipoxygenase products, suggesting additi...

متن کامل

Arachidonate metabolism by human polymorphonuclear leukocytes

Release of arachidonic acid by the membrane phospholipase and metabolism by the 5-lipoxygenase pathway was examined in human polymorphonuclear leukocytes (PMNs). The 5-lipoxygenase pathway is activated when PMNs are given arachidonic acid in ethanol and there is extensive metabolism to 5-hydroxyicosatetraenoic acid (5-HETE) and leukotriene B4 (LTB4). This activation event was shown to be altere...

متن کامل

Macrophage Hydroxy - Eicosatetraenoic Acid Metabolism

Mouse resident macrophages are potent sources of arachidonic acid (20:4) 1 metabolites generated via both the cyclooxygenase and lipoxygenase pathways (1-5). The phospholipids of this cell are highly enriched with 20:4, and upon appropriate membrane stimulation, up to 50% of endogenous 20:4 is released and metabolized to a mixture of prostaglandins, hydroxy-eicosatetraenoic acids (HETEs), and l...

متن کامل

Arachidonic acid metabolism is altered in sarcoid alveolar macrophages.

Macrophages produce various arachidonic acid (AA) metabolites which may either enhance or suppress inflammatory processes. We investigated AA metabolite production by alveolar macrophages (AMs) from 11 patients with pulmonary sarcoidosis and 9 normal volunteers. We assessed the production of both cyclooxygenase products (prostaglandin (PG) E2, thromboxane B2 (TXB2), PGF2 alpha, and 6-keto-PGF1 ...

متن کامل

Monocyte migration explains the changes in macrophage arachidonate metabolism during the immune response.

The profile of arachidonic acid metabolites in resident peritoneal macrophages is distinctly different from the profile of macrophages isolated after an acute bacterial infection. The latter produce decreased prostaglandins E2 and I2 and leukotriene C4 while conserving the synthesis of thromboxane A2. We show here that the initial changes in peritoneal macrophage arachidonate metabolism during ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Experimental Medicine

دوره 155  شماره 

صفحات  -

تاریخ انتشار 1982